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Develop innovative computing platforms based on patented 

Self-organizing Circuits and Computational Memories 

Spun out 2016

Founders: 
• Dr. Fabio Traversa, Co-Inventor, CTO
• Dr. Max Di Ventra, Co-Inventor
• John Beane, CEO, Serial Entrepreneur

Mission 

Overcome computational limits industry faces today and 

tomorrow

Purpose 

Proprietary2



Pyramid of Motivations

Digitalization

Artificial intelligence 

IOT - communication - big data

Exponential energy consumption growth 

The end of Moore’s law and Dennard scaling 

Scale progress makes industrial problems intractable 
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Quantum 

computing

Neuromorphic 

computing

MemComputing

The solution:
Non-von 
Neumann 
architectures
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Optimization Problems
Real time computing

(AI & NN, graphics, edge, comms)

Products
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Universal Memcomputing 
Machine
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Turing

▪ Sequential

▪ General purpose (algorithm 

adapts problem to the machine)

F.L. Traversa and M. Di Ventra, IEEE Trans. Neur. Net. & Learn. Sys. (2015)
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Head

Instructions

Control 

unit 

Input Output

Computational

memory

MemCore

▪ Intrinsically parallel

▪ Adaptive (Machine adapts to the 

problem)

Memcomputing
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Direct implications

- F.L. Traversa and M. Di Ventra, 
IEEE Trans. Neur. Net. & Learn. Sys. (2015)

- F.L. Traversa et al. Nanotechnology, (2014) Proprietary 8

• Mitigate or eliminate entirely the von Neumann bottleneck 

• Ultra low power and extreme performance distributed 
computing architectures 

• Efficient solution of Turing (combinatorial) complex problems 



formal 
definition

Computational Complexity Benefit

Equivalent to Non-deterministic Turing Machine 

Efficient solution of NP problems
within the Memcomputing Paradigm

F.L. Traversa and M. Di Ventra, 
IEEE Trans. Neur. Net. & Learn. Sys. (2015) 
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The Challenge

Design a practical MemComputing 
Machine
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Self-organizing circuits
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Boolean Logic
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INPUT BITS

b1 b2

OUTPUT BIT

bout = b1& b2

b1 b2 bout

1 1 1

1 0 0

0 1 0

0 0 0

Conventional logic gate

F.L. Traversa and M. Di Ventra, 
UCSD Patent (2015), Chaos (2017)



Boolean Logic

F.L. Traversa and M. Di Ventra, 
UCSD Patent (2015), Chaos (2017)
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Self-organizing Logic

14

F.L. Traversa and M. Di Ventra, 
UCSD Patent (2015), Chaos (2017)



Self-organizing Logic

F.L. Traversa and M. Di Ventra, 
UCSD Patent (2015), Chaos (2017)
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Self-organizing logic gates

F.L. Traversa and M. Di Ventra, 
UCSD Patent (2015), Chaos (2017)
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Self-organizing logic gates

F.L. Traversa and M. Di Ventra, 
UCSD Patent (2015), Chaos (2017)

DCM DCM

DCM

DCM

Read Voltages 

Proprietary17



From problem to solution

F.L. Traversa and M. Di Ventra, 
Chaos (2017)
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Self-Organizing Circuit Design Principles

Formal proofs: 
F.L. Traversa and M. Di Ventra, Chaos (2017); 
M. Di Ventra and F.L. Traversa, Phys. Lett. A (2017); 
M. Di Ventra and F.L. Traversa, Chaos (2017)

Further readings: 
F. Caravelli F.L. Traversa and M. Di Ventra, Phys Rev E (2017); 
F. Caravelli, Entropy (2018); 
S. Bearden, F. Sheldon, M. Di Ventra, EPL (2019)

• Functional analysis

• Topology and Topological 
field theory

• Stability Theory

• Chaos Theory

• Attractors and equilibria

• Convergence properties

• Control

• Absence of Chaos

• Criticality
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Self-Organization & Non-Locality

M. Di Ventra, F.L. Traversa, I.V. Ovchinnikov,
(Annalen der Physik 2017)

- System is critical (edge of chaos)
- System has equilibria
- System is point dissipative

- Scale-free correlations
- Optimal convergence
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Instantonic Phase and Tunneling 

M. Di Ventra, F.L. Traversa, I.V. Ovchinnikov,
(Annalen der Physik 2017)

F. Caravelli, F. Sheldon, F.L. Traversa
(Arxiv 2021)

- Scale free correlations
- Multidimensional state space
- “Hidden” state variables

- Instantonic Phase
- Convexification
- Classical Tunneling
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F.L. Traversa and M. Di Ventra, UCSD Patent 
(2015), Chaos (2017), arxiv (2019)

Virtual  MemComputing
Machine

Emulation of self-organizing circuits enables a 
radically different and more efficient use of the 
standard hardware to solve Combinatorial 
Optimization Problems

Software 
simulation 
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Solving Satisfiability 
problems
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Maximum Satisfiability Problem

Goal: 
Maximize the number of satisfied clauses

or, equivalently,
minimize the number of unsatisfied clauses

f = (x1 ∨ x2 ∨ ¬x3) ∧ (x3 ∨ ¬x4) ∧ ... ∧ (¬xk ∨ xn)

AND

OR

clause

Literal
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Satisfiability Problem

1 1 1 1 1

F.L. Traversa et al., Complexity (2018), 
F. Shelodon et al., Arxiv (2018)
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Stress-testing Memcomputing
64M variables!

Simulations performed by 
Dr. P. Cicotti, NSF San Diego Supercomputer Center

using a MatLab code running on a single Intel Xeon processor

F.L. Traversa et al., Complexity (2018), 
F. Shelodon et al., Arxiv (2018)
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Stress-testing Memcomputing

Simulations performed by 
Dr. P. Cicotti, NSF San Diego Supercomputer Center

using a MatLab code running on a single Intel Xeon processor

128 Gb

F.L. Traversa et al., Complexity (2018), 
F. Shelodon et al., Arxiv (2018)
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Solving Integer Linear 
Programming Problems
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Self-organizing Algebraic Gates

Self-Organizing  Algebraic Gate



𝑗

𝑎𝑗𝑥𝑗 − 𝑏𝑗
𝑎1 𝑎2 𝑎4𝑎3

𝑜𝑢𝑡
DCM

DCMDCM

DCM DCM

Dynamic correction 
module

DCM

Read Voltages 

Inject Current

F. L. Traversa, M. Di ventra, ArXiv (2018)
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GPU & MemCPU

Distributed architectures are suitable for High 

Parallelizable Solutions

Cplex, Gurobi, Xpress cannot take advantage of 

distributed architectures

MemCPU can easily run on GPUs 
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MIPLIB: Integer Programming 
• Released in 2010, MIPLIB2010 is an extremely well known set of instances 

used to benchmark Mixed Integer Programming (MIP) applications

• Of the ~360 instances in the set:
• 50+ take at least 1hr to solve using commercial solvers (some still take 

days to solve)
• 70+ are still open and unsolved

• Represent difficult problems dealing with:
• Personnel Scheduling
• Open Pit Mining
• Production Lot Sizing
• Circuit Design
• Sensor / Telco Equipment Placement
• Network & Traffic Flow
• Haplotype Retrieval
• Protein Folding
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MIPLIB Open binary problems 

The interesting case of f2000

f2000 is an 
open problem 
from MIPLIB-

2010

f2000 is an open 
from SAT 

competition since 
2010

MIP problem SAT problem

In 8 years no solver has ever 
found a feasible solution

F. L. Traversa, M. Di ventra, ArXiv (2018)
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MIPLIB Open binary problems 

The interesting case of f2000

With MemComputing we have 
Found multiple feasible solutions

In a 300 second run

The first within 60 seconds

F. L. Traversa, M. Di ventra, ArXiv (2018)
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MIPLIB Open binary problems 

F. L. Traversa, M. Di ventra, ArXiv (2018)
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Open-shop scheduling
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Problem Definition

• Each Job has a number of 
associated tasks that must be run 
on each of the machines. 

• None of the jobs may have tasks 
running concurrently on a machine, 
and each machine may only run 
one task at a time. 

• Goal is to find the most efficient 
schedule for all tasks.

Jobs

Tasks
Machines

J1

Jn

J2

T1

Tm

T2

Tm-1

M1

M2

Mh
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Online vs Offline solution

Online

Schedule the tasks 
sequentially finding optimal 
scheduling based only on 
tasks already scheduled 
without changing their 
schedule.  

• Run fast 

• Low computational 
complexity

• Compact description (few 
variables)

• Strong suboptimal 
scheduling

Jobs

Tasks
Machines

J1

Jn

J2

T1

Tm

T2

Tm-1

M1

M2

Mh

Offline

Schedule the all tasks at 
once finding optimal 
scheduling.

• Run usually slow 

• High computational 
complexity (NP hard)

• Non compact description 
(many variables)

• Optimal scheduling
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Offline: ILP Formulation

• Given:
• 𝜏𝑗𝑝: 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑗 𝑡𝑎𝑠𝑘 𝑜𝑛 𝑝 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

• 𝑇: 𝑡ℎ𝑒 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒

• We have the system of equations describing our ILP as:
oMinimize: max𝑗𝑝 σ𝑗𝑝(𝑡𝑗𝑝+𝜏𝑗𝑝)

Subject to 
o 𝑡𝑗𝑝 ≥ 𝑡𝑗′𝑝 + 𝜏𝑗′𝑝 − 𝑇𝑦𝑗𝑗′𝑝
o 𝑡𝑗𝑝 + 𝜏𝑗𝑝 ≤ 𝑡𝑗′𝑝 + 𝑇(1 − 𝑦𝑗𝑗′𝑝)

o 𝑡𝑗𝑝 ≥ 𝑡𝑗𝑝′ + 𝜏𝑗𝑝′ − 𝑇𝑦𝑗𝑝𝑝′
o 𝑡𝑗𝑝 + 𝜏𝑗𝑝 ≤ 𝑡𝑗𝑝′ + 𝑇(1 − 𝑦𝑗𝑝𝑝′)
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OSS: online vs offline optimized scheduling

• 10 minutes timeout runs
• Size = # jobs = # machines

Online
MemCPU
Best ILP solver



Proprietary42

OSS: online vs offline optimized scheduling

• 10 minutes timeout runs
• Size = # jobs = # machines

MemCPU
Best ILP solver
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Memory allocation
(bin packing)
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Problem Definition

• A set of M messages of different 
sizes

• A set of memory banks with 
capacity B

• Minimize the number of banks to 
allocate all messages M without 
exceeding the bank capacity 

This problem, and its variants, is 
equivalent to the bin packing 
problem, a famous NP-hard problem
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Online vs Offline solution

Online

Allocate messages 
sequentially finding optimal 
allocation based only the 
current memory allocation 
without changing it.  

• Run fast 

• Low computational 
complexity

• Compact description (few 
variables)

• Strong suboptimal 
scheduling, >50% proven 
suboptimal

Offline

Allocate all messages at 
once finding optimal 
allocation.

• Run usually slow 

• High computational 
complexity (NP hard)

• Non compact description 
(many variables)

• Optimal allocation
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Offline: ILP Formulation

• Given:
• 𝑥𝑚𝑏: 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 1 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑖𝑛 𝑏

• 𝑦𝑏: 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 1 𝑖𝑓 𝑡ℎ𝑒 𝑏𝑎𝑛𝑘 𝑏 𝑖𝑠 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑

• We have the system of equations describing our ILP as:
oMinimize: σ𝑏 𝑦𝑝
Subject to 
oσ𝑚 𝑥𝑚𝑏 ≤ 𝐵𝑦𝑏
oσ𝑏 𝑥𝑚𝑏 = 1
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Memory allocation

• 10 minutes timeout runs
• Size = # message
• Target: find allocation at 

most 5% above the lower 
bound. 

• Notice, online algorithms 
are ~50% above the lower 
bound

MemCPU
Best ILP solver



Unsupervised 
Neural Network 
training
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Efficient Restricted Boltzmann 
Machine training for deep learning  

Pretraining each RBM

(unsupervised learning) 

Standard method:

Contrastive divergence 

Training DBN

(supervised learning) 

Standard method:

Backpropagation

output

RBM 4

RBM 3

RBM 2

RBM 1
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Comparison: after 400 BP iters
Standard Quantum MemComputing

Gibbs Quantum MemComputing

H. Manukian et al., Neural Networks (2019)
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The 5th Airbus 
Problem: 
Aircraft Loading 
Optimization
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Aircraft Loading Optimization

F. L. Traversa, ArXiv (2019)
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Aircraft Loading Optimization

F. L. Traversa, ArXiv (2019)

N = number of bins
n = number of 
containers
R = n/N

k(r) t 0.11r+1.25
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Oil & Gas:
Helicopter Routing 
Problem
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Helicopter Routing Problem

• Represents large operational expense 

• Problem is combinatorial in nature

• Must consider:

• Number of passengers

• Cargo

• Helicopter capacity constraints (weight, time, availability)

• Number of destinations (shore to platform, platform to platform etc.) 

• Intractable for today’s computers

• Companies rely on heuristic techniques to solve

• Result is sub-optimal operations

Goal: Optimize the scheduling/routing of helicopters to offshore rigs
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Results

• Commercial solver takes hours for small instances

• Commercial solver unable to scale past 80 passengers

• VMM scales polynomially

• VMM finds near optimal solutions at scale in seconds

• Ability to  improve operations & bottom line 

Compared to leading commercial solver

Scheduling for:
25 rigs, 2 kinds of helos, 1 heliport, varying # of passengers
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